skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jirsa, Viktor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Although the brain is often characterized as a complex system, theoretical and philosophical frameworks often struggle to capture this. For example, mainstream mechanistic accounts model neural systems as fixed and static in ways that fail to capture their dynamic nature and large set of possible behaviors. In this paper, we provide a framework for capturing a common type of complex system in neuroscience, which involves two main aspects: (i) constraints on the system and (ii) the system's possibility space of available outcomes. Our analysis merges neuroscience examples with recent work in the philosophy of science to suggest that the possibility space concept involves two essential types of constraints, which we call hard and soft constraints. Our analysis focuses on a domain‐general notion of possibility space that is present in manifold frameworks and representations, phase space diagrams in dynamical systems theory, and paradigmatic cases, such as Waddington's epigenetic landscape model. After building the framework with such cases, we apply it to three main examples in neuroscience: adaptability, resilience, and phenomenology. We explore how this framework supports a philosophical toolkit for neuroscience and how it helps advance recent work in the philosophy of science on constraints, scientific explanations, and impossibility explanations. We show how fruitful connections between neuroscience and philosophy can support conceptual clarity, theoretical advances, and the identification of similar systems across different domains in neuroscience. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available November 1, 2025